Partenaires

CNRS



Rechercher

Sur ce site


Accueil > Productions scientifiques > Articles > Publiés > INDRA, a 4Pi charged product detection array at GANIL

INDRA, a 4Pi charged product detection array at GANIL

J. Pouthas et al

Nucl. Inst. and Meth. A 357(1995)418

INDRA, a new and innovative highly segmented detector for light charged particles and fragments is described. It covers geometrically 90% of the 4π solid angle and has very low detection thresholds. The detector, operated under vacuum, is axially symmetric and segmented in 336 independent cells allowing efficient detection of high multiplicity events. Nucleus identification down to very low energy threshold ( 1 A MeV) is achieved by using ionization chambers operated with low pressure C3F8 gas. Residual energies are measured by a combination of silicon (300 μm thick) and cesium iodide (5 to 14 cm in length) detectors. Very forward angles are covered by fast counting phoswich scintillators (NE102/NE115). Charge resolution up to Z = 50 is achieved on a large energy dynamic range (5000 to 1 for silicon detectors). Isotopic separation is obtained up to Z = 3. The treatment of the signals is performed through specifically designed and highly integrated modules, most of which are in the new VXIbus standard. Full remote control of parameter settings, including visualization of signals, is thus allowed. The detector is continuously monitored with a laser source and electronic pulsers and is found stable over several days. Energy calibration procedures, making use of specific detectors and the ability of the GANIL accelerator to deliver secondary beams, have been developed. First experiments were performed in the spring of 1993.

Collaboration(s)

INDRA