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However, deviations from this simple picture have been found by analysing angularand velocity distributions of light charged particles, and fragments. Indeed, there isan amount of matter in excess emitted between the two primary sources suggestingeither the existence of a mid-rapidity source similar to the one observed in the re-lativistic regime (participants) or a strong deformation induced by the dynamics ofthe collision (neck instability). This last possibility has been suggested by analysingin detail the angular distributions of the fragments. More precisely, we observe anisotropic component which is compatible with the predictions of statistical modelsand a second one corresponding to breakup aligned on the recoil direction of theprojectile like source which should be compared with the predictions of dynamicalcalculations based on microscopic transport models.1 IntroductionUnderstanding the properties of nuclear matter is the most important challenge in nuc-lear physics. To achieve this goal, nuclei �rst have to be prepared in extreme conditionsof excitation energy, temperature, pressure, spin and isospin. The tool used to obtainsuch extreme conditions is heavy ions induced reactions. For heavy systems in the Fermienergy range, two main primary fragments are formed after the collision : the primaryprojectile-like and the target-like fragments which can experience, depending on theirexcitation energies, various exit channels : evaporation of light particles, �ssion or multi-fragmentation.To obtain physical information about the projectile-target nuclear interaction and thetwo excited primary fragments, the characteristics of all detected fragments and particlescan be compared with those predicted by various models. For example, statistical modelsare often used [1, 5] to describe the decay of the primary fragments including "stand-ard" �ssion. The comparison of experimental data with such models �rst implies to testwhether all degrees of freedom are equilibrated (thermal, chemical and shape equilibrium)and whether there is no coupling left between entrance and exit channels . In this work,we present some results concerning one �xed exit channel : the breakup of the projectile-like source in two fragments for which we will give strong evidence for the occurrence oftwo types of mechanisms, namely standard �ssion and aligned breakup.Before studying the projectile-like source breakup, we present an experimental methodused to estimate the impact parameter of the collision (section 2) as well as an illustra-tion about the binary aspect of the primary process (section 3). Next, the �ssion chargeasymmetries obtained after collisions between a given projectile and di�erent targets showstrong reminiscences of the entrance channel (section 4). Moreover, angular distributionsput forward privileged directions corresponding to aligned breakup which are incompatiblewith standard processes. In order to disentangle standard �ssion from aligned breakup a2



method is then proposed, which allows to quantify the relative importance of these mech-anisms as a function of the target and projectile sizes, the incident energy, the violenceof the collision and the breakup asymmetry (section 5). We lastly study the di�erencesbetween the characteristics of the two components and we compare the standard �ssioncomponent with a statistical model in order to obtain information about the �ssioningnucleus at the saddle point (section 6).2 Experimental impact parameterIn Fig.1, the transverse energy of light charged particles E12t = PEi sin2(�i) normalizedto the available energy in the center of mass of the reaction Eavailcm (where Ei is the kin-etic energy of the particle i and �i its angle relative to the beam direction) is plotted forXe+Sn system at di�erent incident energies. The data presented here have been obtainedwith the minimal trigger condition to detect at least one charged product. Each curve isnormalized to the corresponding total number of events and thus represents the transverseenergy probability distribution.
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The distributions obtained at all the incident energies rather well superimpose oneach other, in particular the maximum reached transverse energy corresponds to thesame fraction of the available energy, whatever the incident energy. The same behaviourhave already been observed with the requirement of four charged particles detected butshows more important trigger e�ects at low transverse energy[7]. This scaling with in-cident energies is expected for observables correlated to the impact parameter. Thus, an�experimental� impact parameter can be estimated by mean of these distributions [7, 9]:the impact parameter b is determined by assuming a geometrical correspondence betweenthe cross section � and the impact parameter (� = �b2) [10].3 Reaction mechanismsIn Fig.2, the transverse versus parallel velocity invariant plots (Vpar � Vper correlations)for peripheral collisions are shown for protons, deuterons, tritons, alpha particles, andfragments with charge 3, 6, 10, 15 and 20.For heavy systems at incident energies close to 30 MeV/u, most of the collisions corres-pond to binary processes [11], [12]. We observe two nice circles around the projectile andtarget parallel velocities (jVparj = 4:5 cm=ns), except for some reaction products emittedby the target which are too slow to be detected or identi�ed. Also we can see an amountof matter in excess between the two reaction partners. To go into detail, we have plot-ted on Fig.3 the parallel velocity distributions of the particles and fragments (light greyarea) coincidentally detected with a projectile-like residue (dark grey area) de�ned asthe heaviest fragment. For all particles and fragments, we observe that the forward part(V== > VPLF ) of the velocity distributions (not in�uenced by threshold e�ects) are notsymmetrical with respect to the projectile-like residue velocity. A large number of frag-ments and light charged particles are emitted between the two reaction partners. Such abehaviour suggested to us to study the fragment production against their size by means ofangular correlations. The mid-rapidity particles and fragments have already been studiedin di�erent works [12, 19] and in this paper we focus our studies on fragments emitted bythe PLF which correspond mainly to the plots of the lower rows in Fig.2 and Fig.3.4 In�uence of the entrance channel on the PLFbinary breakupWe will now study the binary breakup of the PLF for various systems and incident en-ergies. In this purpose we select the events with two fragments emitted forward in thecenter of mass and assume that these two fragments result from the binary breakup ofthe PLF.We �rst present in Fig.4 the charge asymmetry distributions of the two fragments4
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Figure 2: Vpar-Vper (cm/ns) invariant velocity plots, in the center of mass, for the Xe+Snsystem at 45 MeV/u for peripheral collisions. The di�erent panels present various typesof reaction products : light charged particles (p,d,t,�) and fragments with charge 3, 6,10, 15 and 20. 5
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Figure 3: Xe+Sn system at 45 MeV/u, peripheral collisions : parallel velocity distributions(cm/ns) for the same type of reaction products as in Fig.2 (light grey area) and for theheaviest fragment detected in coincidence (dark grey area).� = j(Z1 � Z2)j=(Z1 + Z2) for di�erent projectile-targets combinations . For light targets(carbon or aluminum) the breakup is mainly symmetrical (� = 0) in accordance withthe expectation for the statistical �ssion of a heavy nucleus. For the heaviest targetsthe breakup of the PLF shows in addition an important contribution for the highestasymmetries. This additional component increases with the size of the target. On thecontrary to what is observed for the �ssion of a heavy projectile-like fragment which onlydepends, in the case of standart �ssion, on the exit channel parameters (excitation energy,angular momentum, ...), the breakup of the PLF here depends strongly on the target sizewhich is a characteristic of the entrance channel.6
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cos (θprox)  distributions  associated with  the  fission of the  PLF for different targets (rows) and for  different fission asymmetries (columns) .

The light gray distributions are compatible with standart  fissions processes  and the dark gray distributions correspond to the addition of two 

components, a standart and an aligned one. The number of experimental events is indicated in each box.
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asymmetrical breakup (� >0.2), the distributions are peaked at cos(�prox) = +1 whichcorresponds to a breakup aligned on the PLF recoil axis, with the heavy fragment fasterthan the light one. For the Au and U targets the asymmetrical distributions are observedeven for the smallest breakup asymmetries.Thus, for heavier targets and greater asymmetries, the breakup axis is preferentiallyaligned with the separation direction of the two primary fragments (TLF and PLF),the lighter fragment emitted by the PLF being located between the heavy one and theTLF. This e�ect increases with the size of the target and the asymmetry of the PLFbreakup. Like the charge asymmetry distributions, this privileged direction dependingon the charges of the PLF fragments, suggests to us a target e�ect. Such a behaviourcan not be understood in a classical approach of standard �ssion because this statisticaldescription presupposes that there is no coupling left between entrance and exit channels.The only privileged directions compatible with this description are the reaction plane dueto spin e�ects, and the plane perpendicular to the PLF-TLF separation direction due toCoulomb repulsion [20], [21]. The alignement that we observed thus suggests the breakupof a deformed projectile-like source on the recoil axis. Aligned binary breakup of the PLFhas been previously observed at Fermi energies [13], [22], and also at lower energies [20],[23], [24].5 Competition between �ssion and aligned breakup5.1 Separation of the two contributions with angular distribu-tionsThe distributions plotted in Fig.6, can be viewed as the sum of two components : the �rstone, symmetrical with respect to cos(�prox) = 0, could be associated to standard �ssion,and the second one peaked at cos(�prox) = 1 to aligned breakup. For a given projectile,the relative weights of these two components depend on the target size and the breakupasymmetry. In order to isolate the �rst component, we symmetrized around cos(�prox) = 0the backward part (cos(�prox) < 0) of the experimental distribution, supposing thus thatthis part is not in�uenced by non-statistical breakup : the cos(�prox) distribution areindeed expected to be symmetrical in the case of standard �ssion. The aligned contri-bution is then obtained by subtracting this standard �ssion distribution from the totalexperimental distribution. The result of this procedure is shown in the central column ofFig.7, whereas the initial distributions are presented in the left one, for di�erent breakupasymmetries of Pb impinging on Ag target. The percentage of aligned breakup for eachasymmetry is given in the central column of Fig.7. This percentage increases with theasymmetry from 5% (� = 0 � 0:1) to 22% (� = 0:3� 0:4) which corresponds to a chargevalue of 54 for the heaviest fragment and 26 for the lightest one.De�nding �spin as the angle between the breakup axis and the aligned spin axis (Fig.5),we have plotted the cos(�spin) distributions in the last column of Fig.7. The higher the10
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the PLF frame and thus are independent.
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to the �ssility of the two projectiles. Depending on the studied systems, aligned breakupcan be the dominant process and the physical information, like �ssion probabilities orangular momentum, obtained with such models would certainly be wrong [28]. So it isvery important to �rst separate the events associated with standard �ssion in order tocompare them to statistical models predictions.6 Comparisons with a statistical prescriptionThe methods used to quantify the two mechanisms are entirely based on the reasonableassumption that the backward part of the cos(�prox) distributions, or the �at part of the�plane distributions, are compatible with the statistical description and thus correspond tostandard �ssion. Now we want to verify that the asymmetry distribution of these eventsare indeed compatible with a statistical prescription. These asymmetry distributions havebeen compared to those predicted by the "transition state model" [2], [29] with the �ssionbarrier values given in [30]. This model calculates the probability of observing a given�ssion asymmetry for a �xed charge of the �ssioning nucleus, a �xed temperature and a�xed angular momentum. It is applied to di�erent systems Gd+U, Gd+C and Xe+Sn(Fig.10).We have some constraints on the "free" parameters. The cos(�spin) distributions,associated with the �at part of the �plane distributions (method presented in section5.1), give us a constraint on the ratio J=pT [25]. Moreover, the charge of the �ssioningnucleus is necessarily greater than or equal to the sum of the charges of the two detectedfragments. For the Gd+U system at 36MeV/u, the shape of the curve is very sensitiveto the "free" parameters (charge, temperature and spin of the �ssioning nuclei). Forexample we can see a large di�erence when the temperature is increased from 2 to 3MeV (Fig.10a). The results of our comparison show that the experimental asymmetrydistribution is compatible with the calculated one for the �ssioning nucleus at the saddlepoint with charge 54, temperature 3 MeV and spin 24�h. The uncertainty of these valuescan be estimated from Fig 10 a-c. The charge 54 is equal to the sum of the charges of thedetected �ssion fragments. So it suggests that the �ssion process takes place at the veryend of the decay process [26], [27].Although the variations of the breakup probabilities with asymmetry are very di�er-ent for the three studied PLFs, they are rather well reproduced by the calculation withreasonable values for the charge, the temperature and the spin of the �ssioning nuclei.These di�erent asymmetry distributions re�ect the �ssility of the studied �ssioningnucleus. The statistical �ssion are mainly symmetrical for heavy PLF with a high �ssility(distribution obtained for Gd+C with ZPLF = 62) and mainly asymmetrical for light PLFwith lower �ssibility. The disappearance of a maximum at � = 0 in the asymmetry distri-bution is known as the Businaro-Gallone point. The distribution obtained for Xe+Sn withZPLF = 51 corresponds to this situation. This result is in agreement with the predictedmass rageABG = 81�145 [30] and the observed one ABG = 100 [31]. The agreement withstatistical model predictions for various PLFs can be considered as a solid proof of the15



validity of our method to separate statistical �ssion and aligned breakup : all variablesassociated with the �rst type of events are rather well reproduced by statistical models.Lastly we studied the relative velocity between the two �ssion fragments of the PLF.We compare the values obtained for the experimental standard �ssion with the predictionof a crude calculation using the Coulomb repulsion (equation 1) and also with the valuesobtained for the aligned breakup in order to extract some quantitative information onthis last process (Fig.11). The contribution of aligned breakup to the relative velocitydistribution is obtained by subtracting the contribution associated with the standard�ssion from the total relative velocity distribution. The lines correspond to the value ofrelative velocities obtained with the equations 1 and 2 (dark lines Fig.11).EC = 1:44 Z1Z2R1 +R2 + 2 (1)VREL=c = s2 � EC�c2 (2)Where EC is the Coulomb energy between the �ssion fragments, Z1, Z2, R1, R2, � thecharges, radius and the reduce mass of the two �ssion fragments.For symmetrical �ssion (� = 0:), the relative velocity obtained with these equations is2.20 cm/ns. This value is compatible with the Viola sytematic [32]. To take into accountthe thermal energy (T=4MeV) estimated from the asymmetry distribution Fig.10.e, wehave added arbitrary 2T in the previous calculation (grey lines Fig.11).Except for the highest asymmetries (� > 0.5) and the lowest impact parameters,the velocities remains roughly compatible with the calculation for the most part of thestandard �ssion component (Fig.11a). On the contrary, in Fig.11b, the relative velocityvalues are always higher for the aligned component. Even for peripheral events the relativevelocities are higher than those obtained with the calculation. They also show a strongevolution with the impact parameter, mainly for the symmetrical �ssion. For the standard�ssion the deviations between data and the calculation can be understood by a littlemixing between standard and aligned �ssion becausse for the highest asymmetries thealigned component dominates and the separation is di�cult.All these observations suggest that the aligned �ssion originates from very strongdeformations of the projectile during its interaction with the target. Just after the colli-sion the deformation is so large that the projectile-like fragment goes inevitably towardsbreakup: the PLF does not return to his equilibrated shape before its breakup, like in thecase of a standard �ssion. Its deformation is as large (or even more) as the deformationof the same nucleus at the saddle point in a standard �ssion process. The process iscontinuous, so the relative velocity associated to the deformation at the saddle point is16
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